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Abstract

A co-volume scheme is introduced for the rotating shallow water equations, in
which both velocity components are specified on cell edges, and the thickness
variables evolve on both the primary and the dual cell centers. The scheme
applies to generic, conforming and non-orthogonal staggered grids, including
the widely used lat-lon quadrilateral grids and the Delaunay-Voronoi tessel-
lations. It can be viewed either as coupled C-grid schemes on the primary
and dual meshes, or as an generalization of the traditional E-grid scheme on a
new non-overlapping grid. Linear dispersive wave analysis shows that, on the
wavenumber space resolved by either the primary or the dual mesh of a uni-
form quadrilateral staggered grid, the co-volume scheme possesses the same
dispersive relations as the Z-grid scheme. The total wavenumber space re-
solved by the staggered grid is twice as large, on which the co-volume behaves
exactly like the E-grid scheme. On a uniform hexagon-triangular staggered
grid, the co-volume has two steady modes and two inertial-gravity modes
on the hexagonal mesh, and one steady mode, two inertial gravity modes,
and two spurious modes on the triangular mesh. On the wavenumber space
resolved by either the hexagonal or the triangular mesh, the inertial-gravity
wave modes remain positive and largely monotone. For the nonlinear shallow
water equations, the co-volume scheme is shown to preserve the potential vor-
ticity dynamics and the total energy exactly. Numerical results are presented
to corroborate and supplement the analyses.
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1. Introduction

Primary concerns in designing numerical algorithms for geophysical flows
are evaluating the method’s ability to faithfully simulate linear wave dy-
namics and conserve certain system invariants such as global mass, potential
vorticity and total energy in the nonlinear system. A robust accounting for
global invariants is particularly important when simulating geophysical flows
on climate or climate change time scales which may span hundreds or thou-
sands of years. For climate applications, C-grid ([2]) schemes, in which the
mass variable is specified at each cell center and the normal velocity com-
ponent is specified at each edge, are popular choices due to their ability to
conserve global invariants (e.g. [3]) along with an accurate representation
of the inertial-gravity modes, provided that the Rossby deformation radius
is well resolved. However, if the Rossby deformation radius is not well re-
solved, which is the case in current global ocean general circulation models,
the performance of the C-grid schemes is severely downgraded ([1, 2, 3]).

Various efforts have been undertaken to improve and/or extend the C-grid
staggering technique. Lin and Rood ([13]) presents a splitting-step CD-grid
scheme for the shallow water equations (SWE), in which, the prognostic
variables evolve on the D-grid while the C-grid is used in the midpoint pre-
dictor step. But their scheme seems to inherit the poor C-grid response for
the marginally resolved inertial modes and the poor D-grid response for the
gravity modes ([18]). Adcroft et. al. ([1]) introduces a combination of the
C- and D-grid schemes, also termed CD-grid, where the thickness variables
are specified at the cell centers and both velocity components are specified
on the edges. However, due to the imbalance between the number of degrees
of freedom (n.d.f.) of the thickness and velocity variables, this scheme in-
troduces computational modes that need to be filtered by an implicit time
stepping technique. The TRiSK scheme of Thuburn et. al. ([21]) and Ringler
et. al. [17] is based on a mapping that reconstructs the tangential velocity
component at one cell edge from normal velocity components on neighboring
cell edges. By design, TRiSK conserves mass up to round off errors. It also
conserves PV and energy up to time truncation errors. However, TRiSK
seems to be sensitive to the singularities in the global spheric grids and has
trouble maintaining a consistent convergence rate at high resolutions ([17],
[11]). Randall ([16]) proposes the Z-grid scheme that solves the SWE through
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its vorticity-divergence formulation. The scheme achieves the optimal rep-
resentation of the inertial-gravity modes among the class of second-order
accurate numerical schemes, and is free of the defects of the C-grid scheme
when the Rossby deformation radius is not well resolved. But, having to
globally invert two elliptic equations at each time step, the Z-grid scheme
faces serious computational obstacles in long-term simulations of geophysical
flows.

We endeavor to develop an alternative numerical scheme that mitigates
the cost issue of the Z-grid scheme, maintains competitive dispersive relations
on a wide range of wavenumber spaces, and is applicable on unstructured
grids, including unstructured non-orthogonal grids. We take a co-volume
strategy towards this goal. Without dwelling into technical details, we can
explain this strategy as follows. Staggered grids, which comprise primary cells
and dual cells, will be employed in the discretization. The dual cell centers
are the vertices of the primary cells, and vice versa. The term “co-volume”
comes from the fact that the SWE system evolves on both the primary cells
and the dual cells. To make this possible, the thickness variable needs to be
defined at both the primary cell centers and the dual cell centers, and both the
normal and tangential velocity components need to be present on the edges.
Due to its flux-form formulation, the scheme intrinsically conserves the mass.
For the discretization of the Coriolis term, there is no reconstruction of the
tangential velocity component involved because, at each edge, the velocity
vector is completely represented by both of the velocity components. This
discrete setup should also make the co-volume schemes flexible and robust.
We draw this preliminary conclusion based on two observations. First, unlike
the CD-grid scheme of [1], the n.d.f. of the thickness variable is now able to
balance the n.d.f. of the velocity on arbitrary staggered grids, thanks to
the additional and crucial presence of the discrete thickness variables on the
dual cell centers. Second, the fact that both velocity components are natively
specified on each edge makes it possible for the scheme to adapt to grids that
are not orthogonal, i.e. the dual cell edges do not necessarily intersect the
primary cell edges orthogonally. The last claim, if established, will render
the co-volume schemes applicable on a much wider class of grids.

Similar techniques with the same name have been applied by Nicolaides
et. al. to the curl-div systems in electromagnetics [15] and to incompressible
flows [14], based on the curl-div formulation of the model, and by Baugh-
man and Walkington [4] to the classical Stefan problem that models heat
conduction in materials undergoing phase changes. The idea of introducing
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extra degrees of freedom into the system in order to improve the dispersive
relations has been employed by Xiao et. al. ([25]) to develop the collocated
M-grid scheme. But the formulation of the M-grid scheme is fundamentally
different from ours, and the two schemes also have different dispersive rela-
tions, as we shall see later.

In the rest of this article, we systematically and thoroughly explore the
potential of our co-volume strategy in simulating geophysical flows. But first,
in Section 2, we prototype the co-volume schemes for the Linear Shallow-
Water Equations (LSWE) on a general orthogonal staggered grid. In Section
3, we perform linear wave analysis on the co-volume schemes on both the
quadrilateral and the hexagon-triangular staggered grids in order to evaluate
the method’s ability to simulate linear wave dynamics. In Section 4, we
present the co-volume scheme for the Nonlinear Shallow-Water Equations
(NSWE) on unstructured and non-orthogonal staggered grids; the scheme
on orthogonal grids will then follow as a special case. Here we constrain
modeling choices present in the scheme such that potential vorticity and
total energy is conserved. Numerical results for the NSWE on Delaunay-
Voronoi (orthogonal) grids are reported in Section 5. We conclude in Section
6.

2. A co-volume scheme for linearized shallow water equations on
generic orthogonal staggered grids

Grid information and notations
We consider a general orthogonal grid, on which the vertices of the primary
mesh cells are the centers of the dual mesh cells, and vice versa. The dual
cell edges intersect the primary cell edges orthogonally. An example of such
a grid is shown in Fig. 2.1. The classification of general orthogonal grids
covers many meshes currently used in climate modeling, such as latitude-
longitude grids, Voronoi tessellations (aka “icosahedral grids”), Delaunay
triangulations and conformally-mapped cubed sphere meshes.

In order to describe the co-volume discretization, some notations are
needed. As shown in the diagram in Figure 2.2, the primary cells are in-
dexed by i, and the dual cells by ν. Hence the primary cells are referred to
as Ai, and the dual cells as Dν . When no confusion should arise, we also use
Ai and Dν to denote the areas of the primary and dual cells, respectively.
Each primary cell edge corresponds to a unique and distinct dual cell edge,
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primary cell centers
dual cell centers
edge points

Figure 2.1: An example of a generic orthogonal staggered grid. The vertices of the primary
mesh cells (solid line) are the centers of the dual mesh cells (dashed line), and vice versa.
The dual cell edges intersect the primary cell edges orthogonally.

and such pairs of edges are indexed by e. Upon the edge pair e, the distance
between the two neighboring primary cell centers is denoted as de, while the
distance between the two neighboring dual cell centers is denoted as le. The
connectivity information of the unstructured staggered grid is provided by
six sets of elements defined in Table 1. For each edge e, an unit vector ne
is defined to be orthogonal to the primary cell edge and therefore parallel to
the dual cell edge. A second unit vector te is defined as

te = k× ne, (2.1)

where k denotes the vertical upward unit vector. Thus te is orthogonal to
the dual cell edge but parallel to the primary cell edge, and points to the
vertex on the left side of ne. For each e and for each i ∈ CE(e), i.e. the set
of cells on edge e (see Table 1), we define the indicator

ne,i =

{
1 if ne points away from primary cell Ai,

−1 if ne points towards primary cell Ai,
(2.2)
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Figure 2.2: A diagram for a generic orthogonal staggered grid. The primary cells are
indexed i, the dual cells by ν, and the edges by e.

and for each ν ∈ VE(e),

te,ν =

{
1 if te points away from dual cell Dν ,

−1 if te points towards dual cell Dν .
(2.3)

The LSWEs are given by

∂

∂t
h+H∇ · u = 0, (2.4)

∂

∂t
u + fk× u = −g∇h, (2.5)

where H is a constant scalar denoting the average fluid thickness, h a scalar
denoting the small perturbation to the fluid thickness, and u (≡ (u, v) on
a Cartesian coordinate) a vector denoting the perturbation to the velocity
field of a fluid at still.

The thickness variables are placed at both the primary and the dual cell
centers. The thickness variables at the primary cell centers are denoted as hi,
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Table 1: Sets of elements defining the connectivity of a unstructured dual grid.

Set Definition

EC(i) Set of edges defining the boundary of primary cell Ai

VC(i) Set of dual cells that form the vertices primary cell Ai

CE(e) Set of primary cells boarding edge e

VE(e) Set of dual cells boarding edge e

CV(ν) Set of primary cells that form vertices of dual cell Dν

EV(ν) Set of edges that define the boundary of dual cell Dν

and the thickness variable at the dual cell centers are denoted as h̃ν . On the
primary cell edges, both the normal (uene) and the tangential (vete) velocity
components are present. The same can be said of the dual cell edges, though
the roles for ue and ve are swapped.

The co-volume scheme for the LSWEs (2.4) – (2.5) is then given by

∂

∂t
hi +H[∇ · u]i = 0, (2.6)

∂

∂t
h̃ν +H[∇ · u]ν = 0, (2.7)

∂

∂t
ue − fve = −g[∇h]e,n, (2.8)

∂

∂t
ve + fue = −g[∇h]e,t. (2.9)

The equations (2.6) and (2.7) result from the flux-form discretization of the
thickness equation (2.4) on the primary and dual cells, respectively, whereas
the equations (2.8) and (2.9) are obtained by projecting the momentum equa-
tion (2.5) in the directions of ne and te, respectively. In the above, the dis-
crete divergence operators [∇ · ( )]i on the primary cells and [∇ · ( )]ν on the
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dual cells, when applied on the velocity field u, are defined as

[∇ · u]i =
1

Ai

∑

e∈EC(i)

uelene,i, (2.10)

[∇ · u]ν =
1

Dν

∑

e∈EV (ν)

vedete,ν , (2.11)

respectively. The discrete gradient operator [∇( )]e,n in the normal direction,
and [∇( )]e,t in the tangential direction, when applied to the thickness field,
are defined as

[∇h]e,n =
−1

de

∑

i∈CE(e)

hine,i, (2.12)

[∇h]e,t =
−1

le

∑

ν∈V E(e)

h̃νte,ν , (2.13)

respectively. If the primary cell edges and the dual cell edges intersect at
the midpoints, then (2.12) and (2.13) are the second-order finite difference
approximations to the gradient operator in normal and tangential directions,
respectively.

h u

vh̃

(a) C-grid on the primary mesh (b) C-grid on the dual mesh

Figure 2.3: The co-volume scheme can be viewed as a C-grid scheme on the primary mesh
coupled with a C-grid scheme on the dual mesh. (a) C-grid on the primary mesh; (b)
C-grid on the dual mesh.
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Figure 2.4: The co-volume scheme on the quadrilateral staggered grid (solid and dashed
lines) can also be viewed as an E-grid scheme on the mesh (dotted lines) connecting the
velocity points.

It is obvious that the co-volume scheme on an orthogonal staggered grid
can be viewed as a C-grid scheme on the primary mesh coupled with a C-grid
scheme on the dual mesh. In the case of LSWE, the coupling is through the
Coriolis forcing solely. In Figure 2.3 the co-volume scheme on the generic or-
thogonal staggered grid of Figure 2.1 is decoupled into two C-grid schemes,
one on the primary mesh and the other on the dual mesh. When the Cori-
olis parameter f vanishes, the two C-grid schemes on the primary and dual
meshes are completely decoupled, and there is a concern that these two sys-
tems may drift far too apart. We will address this issue in Section 5.

The co-volume scheme can also be interpreted as a generalization of the
traditional E-grid scheme ([2]) onto unstructured grids. For example, on the
staggered grid of Figure 2.1, if we connect all the velocity points around each
primary cell center and all the velocity points around each dual cell center,
then we have a non-overlapping tiling of the whole domain by quadrilaterals
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(Figure 2.4). The thickness variables (h and h̃) are defined at the quadri-
lateral cell centers and the velocity components are defined at the vertices,
which is exactly how the variables are distributed in a E-grid scheme. In
our generalized E-grid scheme, there are always four cells around each vertex
away from the boundary, but the cells do not have to be quadrilaterals. For
instance, the mesh connecting the velocity points on a hexagon-triangular
staggered grid comprises of triangles and hexagons.

Now that the co-volume scheme can be interpreted either as coupled, over-
lapping C-grid schemes on the primary and dual meshes, or as a traditional,
non-overlapping E-grid scheme, the question arises as how the dispersive re-
lations obtained through these interpretations are related to each other. Also
presented is the question about how to use the computational data for anal-
ysis and postprocessing. Using all of the data as they are associated with
the E-grid is unlikely a good choice due to the well-known shortcomings of
E-grid scheme ([2]). Assuming that the primary mesh mostly consists of
hexagons, using only the data associated with the C-grid scheme on such a
mesh seems an attractive option, given that the C-grid schemes enjoy satis-
factory dispersive relations on hexagonal meshes ([20]). We will come back
to these essential issues as we present results from the linear wave analysis
and numerical experiments.

3. Dispersive wave analysis

Dispersive wave analysis is usually employed to evaluate how well a nu-
merical scheme solve the dispersive wave modes in a linear system. In this
section we carry out such analysis on the co-volume schemes for LSWE on
the quadrilateral staggered grid and the hexagon-triangular staggered grid.
Even though the co-volume scheme can be either viewed as two coupled C-
grid schemes, or as a single E-grid scheme, we only carry out linear wave
analysis from the first perspective, i.e. the C-grid variables on the primary
mesh and on the dual mesh are treated separated. On a uniform quadri-
lateral staggered grid, the E-grid interpretation is associated with a new
uniform quadrilateral mesh, on which the linear wave analysis of the E-grid
is available in the literature ([2, 16]). On a hexagon-triangular staggered
grid, the E-grid interpretation is associated with a new mesh that comprises
of hexagons and triangles. Due to the non-uniformity in the cell shapes and
resolutions of this mesh, a rigorous linear wave analysis of the E-grid scheme
is not possible.
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The continuous case
Substituting a wave-form solution



h

u

v


 =




Φ

U

V


 ei(kx+ly−ωt) (3.1)

into (2.4) – (2.5), we easily find the dispersion relations between the wave
numbers in the x-, y- and the temporal directions, namely,

ω = 0, (3.2)

ω2 = f 2 + gH(k2 + l2). (3.3)

The first relation (3.2) represents the stationary geostrophic modes of the
flow, whereas (3.3) represents the inertial-gravity modes. It is customary to
normalize ω by f , and by doing so, we obtain from (3.2) that

(
ω

f

)2

= 1 +R2
(
k2 + l2

)
, (3.4)

where R =
√
gH/f denotes the Rossby deformation radius.

The quadrilateral case
The variables are distributed as described in the previous section, and also
see Figure 3.1. The co-volume scheme on the uniform quadrilateral stag-
gered grid can be viewed as the E-grid scheme on a uniform quadrilateral
mesh connecting the velocity points, just as discussed in the previous sec-
tion. It is well-known that, when the grid collapses in one direction (along
the horizontal or vertical direction in our case), the E-grid scheme becomes
an one-dimensional A-grid, and thus inherits all the shortcomings of the lat-
ter. Here, we first adopt the other view of the co-volume scheme as coupled
C-grid schemes on the primary and dual meshes, and analytically derive the
dispersive relations for the corresponding C-grid variables. Then we come
back to discuss how these results relate to the interpretation of the co-volume
scheme as an E-grid scheme.

For the purpose of the linear wave analysis on this particular grid, we
further adopt the following naming conventions. We refer to the normal
velocity components (w.r.t. the primary cells) that point to the right as u1,
the normal velocity components that point up as u2, the tangential velocity
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components (w.r.t. the primary cells) that point up as v1, and the tangential
velocity components that point to the left as v2. The primary cells (solid
line) are indexed by (m, n), with m and n running over all the integers. The
dual cells (dashed line) are then indexed by (m+1/2, n+1/2), and the edges
by (m, n+1/2) or (m+1/2, n). The distance between two adjacent primary
cell centers is denoted by d (Figure 3.1). The normal unit vectors (w.r.t. the
primary cells) point either to the right or upwards, and the tangential unit
vectors (also w.r.t. the primary cells) point either upwards or to the left, thus
conforming to the definition (2.1).

h̃

u1

u2

u1

u2

v2

v1v1

v2

d

Figure 3.1: A uniform quadrilateral staggered grid. Thickness ‘lives’ at both the primary
cell (solid line) centers and the dual cell (dashed line) centers. On each edge, both velocity
components are present.

With these notations for the quadrilateral grid, the co-volume (2.6) – (2.9)
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then takes the following form:





∂

∂t
hm,n +

H

d

(
u1
m+ 1

2
,n
− u1

m− 1
2
,n

+ u2
m,n+ 1

2
− u2

m,n− 1
2

)
= 0,

∂

∂t
h̃m+ 1

2
,n+ 1

2
+
H

d

(
−v2

m+1,n+ 1
2

+ v2
m,n+ 1

2
+ v1

m+ 1
2
,n+1
− v1

m+ 1
2
,n

)
= 0,

∂

∂t
u1
m+ 1

2
,n
− fv1

m+ 1
2
,n

+
g

d
(hm+1,n − hm,n) = 0,

∂

∂t
v1
m+ 1

2
,n

+ fu1
m+ 1

2
,n

+
g

d

(
h̃m+ 1

2
,n+ 1

2
− h̃m+ 1

2
,n− 1

2

)
= 0.

∂

∂t
u2
m,n+ 1

2
− fv2

m,n+ 1
2

+
g

d
(hm,n+1 − hm,n) = 0,

∂

∂t
v2
m,n+ 1

2
+ fu2

m,n+ 1
2

+
g

d

(
h̃m− 1

2
,n+ 1

2
− h̃m+ 1

2
,n+ 1

2

)
= 0.

(3.5)

We note that, u1 and u2, which are normal to the primary cells, defines the
potential vorticity on the dual cells, and on the other hand, v1 and v2, which
are normal to the dual cells, defines the potential vorticity on the primary
cells. This notion will play an essential role in extending the scheme to
nonlinear shallow water equations in Section 4.

The dispersive relations between the discrete wave numbers in the x−,
y− and the temporal directions are found by substituting the canonical wave
form solutions 



h

h̃

u1

u2

v1

v2




=




Φ

Φ̃

U1

U2

V 1

V 2




ei(kmd+lnd−ωt) (3.6)

into (3.5). A set of six equations results for the Fourier coefficients Φ, Φ̃, U1,
U2, V 1, V 2, with expressions involving the discrete wave numbers as coef-
ficients. For there to be non-trivial solutions for the Fourier coefficients, it
must hold that the coefficient matrix has a non-empty null space, or equiv-
alently, its determinant vanishes. Using the last condition, we solve for the
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dispersive relation between the discrete wave numbers,

ω = 0, (multiplicity 2) (3.7)

ω2 = f 2 +
4gH

d2

(
sin2 1

2
kd+ sin2 1

2
ld

)
. (multiplicity 2) (3.8)

The relation (3.8) can also be written as

(
ω

f

)2

= 1 +
4R2

d2

(
sin2 1

2
kd+ sin2 1

2
ld

)
. (3.9)

The dispersive relation (3.9) is formally identical to that for the Z-grid
scheme (see Figure 1 in [16]). We should note this identification happens
when the view of the co-volume scheme as couple C-grid schemes is taken.
The relation between this dispersive relation and that obtained through the
E-grid interpretation will be discussed later. The relation (3.9) shows that
each set of the C-grid variables in the co-volume scheme resolves the inertial-
gravity wave modes equally well as the Z-grid scheme. Plots of the disper-
sive relation of the Z-grid scheme can be found in the reference just cited
and will not be reproduced here. But it is worth mentioning that, when the
Rossby deformation radius is well resolved, the co-volume on either of the
dual meshes on a uniform staggered quadrilateral grid, just like the Z-grid
scheme, resolves the inertial-gravity waves slightly better than the classical
C-grid scheme, and when the Rossby deformation radius is under resolved,
still maintains a monotonically increasing dispersive relation. The co-volume
scheme achieves this without the burden of globally inverting elliptic equa-
tions, but at the cost of evolving a double-sized system compared to the
classical C-grid scheme. The dispersive relation of the M-grid scheme ([25])
is close to that of the Z-grid scheme when the Rossby deformation radius
is well resolved, and appears slightly downgraded when the opposite is true,
but the dimensionless radio ω/f remains above 1.

As mentioned earlier, when the co-volume scheme (or the E-grid inter-
pretation of it) on uniform quadrilateral grids collapses in one direction, it
becomes an A-grid scheme. The smallest wave length that it is capable of
resolving is d, corresponding to a maximum wave number of 2π/d. The wave
along the collapsing direction has, of course, a wave number zero. Hence the
whole space of resolved wave numbers on a uniform quadrilateral grid forms
a right triangle ([2, 16]). The primary mesh alone, as well as the dual mesh,
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Figure 3.2: Inertial-gravity wave frequencies for the E-grid scheme.

on a quadrilateral staggered grid, can resolve wave lengths as short as 2d,
corresponding to a maximum wave number of π/d, in both the horizontal and
vertical directions. Hence the primary mesh or the dual mesh alone resolves
half of the wavenumber space that are resolved by the combined staggered
grid. The dispersive relation of the E-grid scheme on this triangular wave
number space can be found in the references just cited, and is reproduced in
Figure 3 for the ratio R/d = 2. We point out that the contour plot in the sub-
region bounded by the dotted lines for the wave numbers 0 ≤ kd/π ≤ 1 and
0 ≤ ld/π ≤ 1 exactly matches the dispersive relation (3.9) for the co-volume
scheme on either of the dual meshes on the staggered uniform quadrilateral
grid. Hence, by choosing the C-grid data on the primary or dual mesh at
the post-processing stage, we effectively filter out the short waves with either
k ≥ π/d, or l ≥ π/d. What are left constitute good approximation to the
physical inertial gravity waves. Due to the isotropic nature of the uniform
quadrilateral staggered grids, there is no difference between the primary mesh
or the dual mesh. This is no longer true with the uniform hexagon-triangular
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staggered grid, which we are going to discuss next.

The hexagon-triangular case

A hexagon-triangular staggered grid is shown in Fig. 3.3. We refer to
the hexagons as the primary cells, and the triangles as the dual cells. The
normal unit vectors on the primary cell edges point to the right, the upper
right or the lower right, depending on the edges they are associated with.
The tangential unit vectors are determined according to (2.1). The distance
between two neighboring primary cell centers is again denoted as d.

As explained at the beginning of this section, a rigorous linear wave anal-
ysis is not possible for the E-grid interpretation of the co-volume scheme
because of the non-uniformity in the cell shapes and resolutions in the new
mesh that the E-grid scheme is associated with. On the other hand, it is
possible if the co-volume scheme is viewed as as coupled C-grid schemes on
the hexagonal and triangular meshes. In what follows, we adopt this inter-
pretation and carry out the linear wave analysis. This interpretation will
not identify the entire wavenumber space resolved by the meshes, but in the
process we discuss the implications of taking this interpretation.

As for the general orthogonal grid in Section 2 and the quadrilateral grid
in the first half of this section, thickness variables are placed at both the
primary and dual cell centers with the velocities on the edges. However, due
to the multiple directions of symmetry inherent in the hexagonal cells and the
inhomogeneity in the structure of the triangular grid, extra care needs to be
taken in handling these discrete variables. As noted in the above, the normal
unit vectors to the primary cells point in three directions. We distinguish
the velocity component associated with these directions by superscripts 1, 2

and 3 (see Fig. 3.3). The inherent inhomogeneity in the triangular grid is
manifested by the fact that one set of triangles point upward and the rest
point downward. These two sets of triangles form two distinct, uniform
but non-orthogonal lattices, which mandates that they need to be treated
separately in the linear wave analysis. We denote the thickness variables
located at the centers of the upperward-pointing triangular cells as h2, and
those at the center of the downward-pointing triangular cells as h3. The
thickness variables at the primary cell centers are denoted as h1. Thus we
have nine prognostic variables: hi, ui, and vi for i = 1, 2, 3.

Due to the non-orthogonal directions inherent in the hexagonal (or tri-
angular) mesh, it seems natural to work with a non-orthogonal coordinate
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Figure 3.3: A uniform hexagon-triangular staggered grid. The horizontal positions are
indexed by m, and the vertical positions by n. Each of the prognostic variables hi, ui and
vi, for i = 1, 2, 3, resides on a uniform lattice.

system (see [20]), such as one with the two axes forming a 60◦ angle. How-
ever, placing the staggered hexagon-triangular grid on a classic Cartesian
coordinate system has the advantage that the derived dispersive relations
of the discrete system, yet to be presented, can then be compared to the
familiar dispersive relations (3.2) and (3.3) of the continuous system on a
Cartesian coordinate system. The dispersive relations on a non-orthogonal
coordinate system generally involve cross products of wave numbers along
each axis. Hence we choose to work with a Cartesian coordinate and number
the y-axis positions of the grid points by n, and their x-axis positions by m;
see Fig. 3.3 for details.

With these proper notations for the hexagon-triangular grid, the co-
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volume scheme (2.6) – (2.9) takes the following form:





dh1m,n
dt

+

√
3Hd

3Am,n

(
u1
m+ 1

4
,n+ 1

2
− u2

m− 1
4
,n+ 1

2
− u3

m− 1
2
,n

− u1
m− 1

4
,n− 1

2
+ u2

m+ 1
4
,n− 1

2
+ u3

m+ 1
2
,n

)
= 0,

dh2
m+ 1

2
,n+ 1

3

dt
+

Hd

Dm+ 1
2
,n+ 1

3

(
v1
m+ 1

4
,n+ 1

2
+ v2

m+ 3
4
,n+ 1

2
− v3

m+ 1
2
,n

)
= 0,

dh3
m+ 1

2
,n− 1

3

dt
+

Hd

Dm+ 1
2
,n− 1

3

(
−v1

m+ 3
4
,n− 1

2
− v2

m+ 1
4
,n− 1

2
+ v3

m+ 1
2
,n

)
= 0,

du1
m+ 1

4
,n+ 1

2

dt
− fv1

m+ 1
4
,n+ 1

2
+
g

d

(
h1
m+ 1

2
,n+1
− h1m,n

)
= 0,

dv1
m+ 1

4
,n+ 1

2

dt
+ fu1

m+ 1
4
,n+ 1

2
+

√
3g

d

(
h3
m,n+ 2

3
− h2

m+ 1
2
,n+ 1

3

)
= 0,

du2
m+ 1

4
,n− 1

2

dt
− fv2

m+ 1
4
,n− 1

2
+
g

d

(
h1
m+ 1

2
,n−1 − h1m,n

)
= 0,

dv2
m+ 1

4
,n− 1

2

dt
+ fu2

m+ 1
4
,n− 1

2
+

√
3g

d

(
h3
m+ 1

2
,n− 1

3
− h2

m,n− 2
3

)
= 0,

du3
m− 1

2
,n

dt
− fv3

m− 1
2
,n

+
g

d

(
h1m,n − h1m−1,n

)
= 0,

dv3
m− 1

2
,n

dt
+ fu3

m− 1
2
,n

+

√
3g

d

(
h2
m− 1

2
,n+ 1

3
− h3

m− 1
2
,n− 1

3

)
= 0.

(3.10)
In the above, Ap,q denotes the area of the primary cell that centers at (p, q),
and Dp,q the area of the dual cell that centers at (p, q). The system (3.10) is
complete with nine equations for nine prognostic variables hi, ui and vi for
i = 1, 2, 3.

As before, we look for canonical wavelike solutions of (3.10), i.e. for i =
1, 2, 3, and for each proper index pair (p, q),

hip,q = Φie
i
(
kpd+

√
3

2
lqd−ωt

)
, (3.11)

uip,q = U ie
i
(
kpd+

√
3

2
lqd−ωt

)
, (3.12)
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vip,q = V ie
i
(
kpd+

√
3

2
lqd−ωt

)
. (3.13)

Substituting (3.11) – (3.13) into (3.10) and eliminating the common factors
from each equation result in a system of nine equations for the Fourier coef-
ficients (

Φ1, Φ2, Φ3, U1, U2, U3, V 1, V 2, V 3
)T
.

The characteristic polynomial of this system, when solved for ω, has the
following roots:

ω3 = 0, (3.14)

ω2 = f 2 +
4gH

3d2

(
3− cos kd− 2 cos

1

2
kd cos

√
3

2
ld

)
, (3.15)

ω2 = f 2 +
4gH

d2


3−

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld


 , (3.16)

ω2 = f 2 +
4gH

d2


3 +

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld


 . (3.17)

Apparently, (3.14) represents the stationary geostrophic modes of the flow,
some of which can be classified as non-constant pressure modes, with both
velocity components being zero, the thickness variable on the primary mesh
assuming a constant and the thickness variable on the dual mesh assuming
a possibly different constant. We note that the classical C-grid scheme has
constant pressure modes. To better expose the nature of the dispersive rela-
tions of (3.15) – (3.17), we resort to asymptotic analysis and find that, in the
limit of d −→ 0,

3− cos kd− 2 cos
1

2
kd cos

√
3

2
ld ∼ 3

4
k2d2 +

3

4
l2d2,

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld ∼ 3− 1

4
k2d2 − 1

4
l2d2.

Thus, both (3.15) and (3.16) represent the inertial-gravity modes of the flow,
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because, in the limit d −→ 0,

ω2 = f 2 +
4gH

3d2

(
3− cos kd− 2 cos

1

2
kd cos

√
3

2
ld

)

∼ f 2 + gH(k2 + l2),

and

ω2 = f 2 +
4gH

d2


3−

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld




∼ f 2 + gH(k2 + l2).

Asymptotic analysis also shows that (3.17) represents grid-scale high-frequency
computational modes, because

ω2 = f 2 +
4gH

d2


3 +

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld




∼ f 2 +

(
24

d2
− k2 − l2

)
gH

≥ f 2 +
72− 7π2

3d2
gH

> f 2.

The last inequality is obtained when we take into consideration that 0 ≤ k ≤
π/d and 0 ≤ l ≤ 2

√
3π/3d. In this computational mode, the higher the spa-

tial frequencies are, the lower the temporal frequency is; in other words, the
slower the wave moves. For grid-scale oscillations, the temporal frequency
reaches its minimum, which is still strictly larger than the planetary rotation
frequency f . It is interesting to note that the CD-grid scheme of [1] and
a majority of the finite element schemes analyzed in [12] admit a computa-
tional mode whose temporal frequency is exactly f , regardless of the spatial
frequencies of the wave. We should also note that the grids used in their
studies are different from ours.

It is known that triangular grids tend to produce spurious computa-
tional modes ([7]). Hence it is reasonable to suspect that the triangular
mesh of the staggered grid is responsible for the computational modes of
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(3.17). In order to verify this point, we artificially set f = 0 in (3.10). Then
the system for (Φ1, U1, U2, U3)T on the hexagonal grid and the system for
(Φ2, Φ3, V 1, V 2, V 3)T on the triangular grid completely decouple. The char-
acteristic polynomial of the system for (Φ1, U1, U2, U3)T , when solved for
ω, has four roots:

ω2 = 0, (3.18)

ω2 =
4gH

3d2

(
3− cos kd− 2 cos

1

2
kd cos

√
3

2
ld

)
. (3.19)

We note that (3.19) matches the gravity-wave part of (3.15), which indicates
that the hexagonal grid is responsible for the inertial-gravity wave modes
of (3.15) for the discrete system (3.10). It is also clear from (3.18) that
the hexagonal grid is responsible for two of the three stationary geostrophic
modes of (3.14). The characteristic polynomial of the system for (Φ2, Φ3, V 1, V 2, V 3)T

has five roots:

ω = 0, (3.20)

ω2 =
4gH

d2


3−

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld


 , (3.21)

ω2 =
4gH

d2


3 +

√

3 + 2 cos kd+ 4 cos
1

2
kd cos

√
3

2
ld


 . (3.22)

We readily notice that (3.21) matches the gravity-wave part of (3.16) and
(3.22) matches the gravity-wave part of (3.17). This confirms that the tri-
angular grid is responsible for the computational modes of (3.17), and the
inertial-gravity wave modes of (3.16). It is also clear from (3.20) that the
triangular grid is responsible for one of the three stationary modes of (3.14).

The E-grid interpretation of the co-volume scheme on a uniform hexagon-
triangular grid involves a non-overlapping tiling of the plane by hexagons and
triangles, which makes a rigorous dispersive wave analysis impossible. On the
other hand, linear wave analysis on the coupled C-grid schemes clearly shows
that the hexagonal mesh supports two steady mode and two inertial gravity
modes, while the triangular mesh supports one steady modes, two inertial
gravity modes, and two spurious modes. Thus, in a linearized system at least,
choosing C-grid variables on the hexagonal mesh for post facto analysis and
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Figure 3.4: Inertial-gravity wave frequencies for the continuous system, the C-grid, D-grid
and co-volume schemes, with R/d = 2. The co-volume outperforms the C-grid scheme
in that its dispersive relations are closer to those of the continuous case. The CD-grid
scheme of [1] and the Z-grid scheme possess the same inertial-gravity dispersive relations
as the co-volume scheme.

post-processing will in effect discard the spurious modes, at the cost of the
loss of the high quality steady modes and inertial gravity modes that also
live on the triangular mesh.

We have shown in the first half of this section that, in the co-volume
scheme, the data on either the primary mesh or the dual mesh, which ex-
pand exactly half of the total wavenumber space resolved by the co-volume
scheme, has better representation of the inertial-gravity waves than the clas-
sical C-grid scheme when the Rossby deformation radius is well resolved,
and they are free of the defects that the C-grid scheme has when the Rossby
deformation radius is under-resolved. So far the linear wave analysis on the
hexagon-triangular staggered grids only shows that the hexagonal mesh and
the triangular mesh each supports an inertial-gravity wave mode in the limit
of infinite fine resolution (d −→ 0). It is natural to ask how good these
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approximate dispersive relations are when the resolutions are finite, and how
they behave when the Rossby deformation radius is under-resolved. In Fig-
ure 3 we plot the dispersive relations (3.15) and (3.16), called “mode 1” and
“mode 2”, respectively, for 0 ≤ k ≤ π/d, 0 ≤ l ≤ 2

√
3π/3d, and for the ratios

R/d = 2, 0.5, 0.1. The vertical wave number l has a wider range because the
hexagonal mesh has a resolution

√
3d/2 instead of d in the vertical direction.

The triangular mesh potentially has more resolving power than the hexago-
nal mesh and is capable of resolving waves of higher wave numbers in both
the horizontal and vertical directions, but this is complicated and we will
only focus on the same range of wave numbers as for the hexagonal mesh.
For all of the three R/d ratios studied, the dispersive relation (3.15) remains
monotonically increasing in both k and l. The dispersive relation (3.16)
remain positive everywhere and are largely monotonic, the only exceptions
being where l is large (approximately when ld/π > 0.7). In the regime where
the Rossby deformation radius is well resolved, the dispersive relation (3.15)
is slightly weaker than that of the C-grid scheme in the sense that it has a
smaller maximum value for ω in the resolved wave number range. On the
other hand, the relation (3.16) shows a stronger performance with a larger
maximum value, thanks to the additional but un-accounted resolving power
on the triangular mesh. At R/d = 0.5 the dispersive relation (3.16) remains
very competitive, and the relation (3.15) starts to outperform the dispersive
relation of the classical C-grid scheme. At R/d = 0.1, both relations (3.15)
and (3.16) remain positive and largely monotonic, which demonstrates the
robustness of the co-volume scheme on the hexagonal-triangular staggered
grids. We note again that Figure 3 does not represent the whole wavenum-
ber space resolved on the hexagon-triangular grid. The dispersive relation
will unlikely remain monotone in the missing wavenumber space if it is known
to us.

4. A co-volume scheme for the nonlinear shallow water equations
on generic non-orthogonal staggered grids

In this Section we present and study a co-volume scheme for the NSWE on
generic non-orthogonal staggered grids. The co-volume scheme on orthogonal
staggered grids will follow as a special case.

The search for numerical schemes that can generalize to non-orthogonal
staggered grids is motivated by the fact that defects are generally unavoidable
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on grids over complex domains, e.g. the line between two neighboring cell
centers is orthogonal to, but not intersecting the edge between them. Even
in cases where it is possible to generate defect-free staggered grids, the cost of
achieving them may be a concern, especially when adaptive mesh refinement
(AMR) techniques are being applied. The scheme we are about to present
is applicable to arbitrary conforming staggered grids. We also note that
whether a dual cell edge intersects a primary cell edge has impact on the
accuracy, but not on the applicability of the scheme.

The full nonlinear shallow water equations (NSWE), in the vector-invariant
form, are given by





∂h

∂t
+∇ · (hu) = 0,

∂u

∂t
+ qk× hu = −∇(gh+K),

(4.1)

where h, u denote the fluid thickness and horizontal velocity, respectively,
q = (k · ∇ × u + f)/h the potential vorticity, and K = |u|2/2 the per-unit-
volume kinetic energy.

In Fig. 4.1 a generic non-orthogonal staggered grid is shown. The same
notations from the Section 2 for generic orthogonal grids will be followed
here, except for the changes/additions noted below. The unit vector ne is
now defined to be along the dual cell edge, and is not necessarily normal to
the primary cell edge on which it is located. The normal unit vector, which
points in the same cell-to-cell direction as ne, is instead denoted as n̂e. The
tangential unit vector te along the primary cell edge is defined as pointing
to the vertex on the left-hand side of ne, or equivalently,

te = k× n̂e. (4.2)

The unit vector normal to the dual cells and pointing in the same vertex-to-
vertex direction as te is denoted as t̂e, and it is related to ne by

t̂e = k× ne. (4.3)

The unit vectors ne and te form an angle θe, which can be any value non-
inclusively between 0◦ and 180◦.

The discrete prognostic variables, i.e. the thickness and velocities, are
distributed in exactly the same manner as in the case of LSWE on orthogo-
nal staggered grids (see Section 2). The notations are also adopted, i.e. the
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Figure 4.1: A generic non-orthogonal staggered grid. The primary cells are formed by
solid lines, and the dual cells are formed by dashed lines.

thickness variables at primary cell centers are called hi, the thickness vari-
ables at dual cell centers are called h̃ν , etc. However, due to the nonlinear
nature of the system, new diagnostic variables are also needed. These di-
agnostic variables are defined below such that global system invariants are
maintained.

On a two-dimensional domain, every set of two independent vectors form
a complete coordinate system, and so do ne and te for each e. The decom-
position of an arbitrary velocity vector ue can be written as

ue = uene + vete. (4.4)

The following scalar quantities can be easily calculated:

ue · ne = ue + ve cos θe, (4.5)

ue · te = ue cos θe + ve, (4.6)

ue · n̂e = ue sin θe, (4.7)

ue · t̂e = ve sin θe, (4.8)
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where, as we recall, θe denotes the angle between ne and te. Using the
Stokes formula and (4.7), the thickness equation on the primary cell can be
discretized as

dhi
dt

+
1

Ai

∑

e∈EC(i)

heuele sin θene,i = 0 (4.9)

Similarly on the dual cell ν,

dh̃ν
dt

+
1

Dν

∑

e∈EV (ν)

hevede sin θete,ν = 0, (4.10)

Projecting (4.1)2 in the direction of ne and using (4.2) and (4.5), we obtain

∂

∂t
(ue + ve cos θe)− q̄eh̄eue · t̂e = − ∂

∂ne
(gh+K). (4.11)

Using (4.8) and a finite difference approximation for the right-hand side yields

∂

∂t
(ue + ve cos θe)− qeheve sin θe =

1

de

∑

i∈CE(e)

(ghi +Ki)ne,i. (4.12)

In the above, h̄e denotes the fluid thickness on edges, q̄e the potential vorticity
on edges, and Ki the kinetic energy on the primary cell centers. Similarly,
in the direction of te, a finite difference approximation to (4.1)2 is obtained:

d

dt
(ue cos θe + ve) + qeheue sin θe =

1

le

∑

ν∈V E(e)

(gh̃ν +Kν)te,ν , (4.13)

where Kν denotes the kinetic energy on the dual cell centers.
The co-volume scheme for the NSWE (4.1) on a non-orthogonal grid con-

sists of equations (4.9), (4.10), (4.12) and (4.13). The specification of the
diagnostic variables Ki, Kν , qe and he will be determined through the poten-
tial vorticity dynamical analysis and the energetic analysis of this discrete
system.

PV dynamics
As usual, we denote the relative vorticity by ζ, which is defined as

ζ = curlu. (4.14)
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Applying the Stokes formula on a dual cell Dν , we obtain

∫

Dν

ζ =

∫

Dν

curlu =

∫

∂Dν

u · τ , (4.15)

where τ denotes the tangential vector along the edge of Dν . The relation
(4.15) suggests a definition for the discrete curl operator on the dual cell Dν :

ζ̃ν =
−1

Dν

∑

e∈EV (ν)

(ue + ve cos θe)dete,ν . (4.16)

Similarly, on a primary cell Ai, the discrete curl operator can be defined as

ζi =
1

Ai

∑

e∈EC(i)

(ue cos θe + ve)lene,i. (4.17)

We apply the discrete curl operator (4.16) to equations (4.12) to obtain

d

dt
ζ̃ν +

1

Dν

∑

e∈EV (ν)

qeheve sin θedete,ν =
1

Dν

∑

e∈EV (ν)

∑

i∈CE(e)

(ghi +Ki)ne,ite,ν .

(4.18)
We note that the right-hand side of (4.18) is the discrete form of ∇×∇, and
it vanishes (see [17] for a proof). We define the absolute vorticity and the
potential vorticity on dual cell centers as

η̃ν = ζ̃ν + f̃ν and q̃ν =
η̃ν

h̃ν
, (4.19)

respectively. Then we derive from (4.18) that

d

dt
(q̃ν h̃ν) +

1

Dν

∑

e∈EV (ν)

qeheve sin θedete,ν = 0, (4.20)

which is the flux-form discretization of the thickness-weighted potential vor-
ticity equation on the dual cells. Following a similar procedure, we define
the absolute vorticity and the potential vorticity on the primary cell centers
as

ηi = ζi + fi and qi =
ηi
hi
, (4.21)
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respectively. We then derive from the other discrete momentum equation
(4.13) that

d

dt
(qihi) +

1

Ai

∑

e∈EC(i)

qeheue sin θelene,i = 0, (4.22)

which is a flux-form discretization of the thickness-weighted PV equation on
the primary cells. Choice has not been made with regard to qe, the potential
vorticity on the edges. However, we can conclude that, with a proper defini-
tion for qe, the discretizations (4.43)3,4 of the momentum equations preserve
the PV dynamics up to time truncation errors. For qe, we choose

qe =
1

4


 ∑

i∈CE(e)

qi +
∑

ν∈V E(e)

q̃ν


 . (4.23)

Taking PV on the edge as the average of the PV on the neighboring primary
and dual cells serves to couple together the two subsystems on the primary
and dual meshes.

Energy conservation
The per-unit-volume kinetic energy is given by

K =
1

2
|u|2 =

1

2
u2 +

1

2
v2 + uv cos θ. (4.24)

Hence a consistent approximation of the kinetic energy on edge e is

Ke =
1

2
u2e +

1

2
v2e + ueve cos θe. (4.25)

We multiply (4.12) by heue and (4.13) by heve to obtain

he
d

dt

u2e
2

+ heue
d

dt
(ve cos θe)− qeh

2

eueve sin θe =
heue
de

∑

i∈CE(e)

(ghi +Ki)ne,i,

(4.26)

he
d

dt

v2e
2

+ heve
d

dt
(ue cos θe) + qeh

2

eueve sin θe =
heve
le

∑

ν∈V E(e)

(gh̃ν +Kν)te,ν ..

(4.27)
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Combining (4.26) and (4.27) and also using (4.25), we find that

d

dt
(heKe) = Ke

d

dt
he +

heue
de

∑

i∈CE(e)

(ghi +Ki)ne,i +
heve
le

∑

ν∈V E(e)

(gh̃ν +Kν)te,ν . (4.28)

We define

Ae =
1

2
dele sin θe. (4.29)

Multiplying (4.28) by Ae and summing over all edges, we have

d

dt

∑

e

AeheKe =
∑

e

AeKe
d

dt
he +

∑

e

heuele sin θe
2

∑

i∈CE(e)

(ghi +Ki)ne,i

+
∑

e

hevede sin θe
2

∑

ν∈V E(e)

(gh̃ν +Kν)te,ν (4.30)

By exchanging the summation order over (e, i) and over (e, ν), we obtain

d

dt

∑

e

AeheKe =
∑

e

AeKe
d

dt
he +

1

2

∑

i

(Ki + ghi)
∑

e∈EC(i)

heuele sin θene,i

+
1

2

∑

ν

(Kν + gh̃ν)
∑

e∈EV (ν)

hevede sin θete,ν (4.31)

The terms involving ghi or gh̃ν represent the conversion between kinetic
energy (KE) and potential energy (PE). We multiply (4.9) by Aighi, and
sum over all primary cells to obtain

d

dt

∑

i

1

2
Aigh

2
i = −

∑

i

ghi
∑

e∈EC(i)

heuele sin θene,i. (4.32)

Similarly with (4.10), we obtain

d

dt

∑

ν

1

2
Dνgh̃

2
ν = −

∑

ν

gh̃ν
∑

e∈EV (ν)

hevede sin θete,ν . (4.33)
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We define

KE =
∑

e

AeheKe, (Kinetic energy) (4.34)

PEC =
∑

i

1

2
Aigh

2
i , (Potential energy on primary cells) (4.35)

PEV =
∑

ν

1

2
Dνgh̃

2
ν . (Potential energy on dual cells) (4.36)

Using these notations, we can write the sum of (4.30), 1
2
× (4.32) and

1
2
× (4.33) as

d

dt

(
KE +

1

2
PEC +

1

2
PEV

)
=
∑

e

AeKe
d

dt
he +

1

2

∑

i

Ki

∑

e∈EC(i)

heuele sin θene,i +
1

2

∑

ν

Kν

∑

e∈EV (ν)

hevede sin θete,ν . (4.37)

The PE/KE conversion terms from (4.31), (4.32) and (4.33) have canceled.
For energy conservation, we want the right-hand side of (4.37) to vanish,

that is,

∑

e

AeKe
d

dt
he +

1

2

∑

i

Ki

∑

e∈EC(i)

heuele sin θene,i

+
1

2

∑

ν

Kν

∑

e∈EV (ν)

hevede sin θete,ν = 0. (4.38)

Using (4.9) and (4.10), we find (4.38) to be equivalent to

∑

e

AeKe
d

dt
he −

∑

i

AiKi

2

d

dt
hi −

∑

ν

DνKν

2

d

dt
h̃ν = 0. (4.39)

We let he to be given by

he =
1

4


 ∑

i∈CE(e)

hi +
∑

ν∈V E(e)

h̃ν


 . (4.40)
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Substituting (4.40) into (4.39), we conclude that (4.39), and so does (4.38),
holds if

Ki =
1

2Ai

∑

e∈EC(i)

AeKe, (4.41)

Kν =
1

2Dν

∑

e∈EV (ν)

AeKe. (4.42)

A co-volume scheme for the NSWE on orthogonal staggered grids
By take θe = 90◦ for each e in (4.9), (4.10), (4.12) and (4.13), we obtain a
co-volume scheme for the NSWE on orthogonal grids, and it is listed below
reference: 




dhi
dt

+
1

Ai

∑

e∈EC(i)

heuelene,i = 0,

dh̃ν
dt

+
1

Dν

∑

e∈EV (ν)

hevedete,ν = 0,

due
dt
− qeheve =

1

de

∑

i∈CE(e)

(ghi +Ki)ne,i,

dve
dt

+ qeheue =
1

le

∑

ν∈V E(e)

(gh̃ν +Kν)te,ν .

(4.43)

Being a special case of the co-volume scheme on non-orthogonal grids, the
current scheme inherits the conservative properties from it, namely the con-
servation of PV dynamics and total energy.

5. Numerical results

In this section we present the results of numerical experiments conducted
with the co-volume scheme (4.43) for the NSWEs.The goals of these experi-
ments are to demonstrate the convergence and the conservative properties of
the scheme, and to address concerns about the scheme related to the com-
putational modes and the possible decoupling between the system on the
primary cells and the system on the dual cells. To these ends, we select
the shallow water standard test cases #2 and #5 (SWSTC2 and SWSTC5,
[24]), and a case with the doubly periodic domain. The analytic solutions of
SWSTC2 allows accurate calculations of the numerical errors while the rich

31



dynamics in SWSTC5 allows qualitative evaluation of the computational
modes. The doubly periodic case allows one to turn on and off the Coriolis
parameter and assess the decoupling between the system on the primary cells
and the systems on the dual cells.
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Figure 5.1: Convergence of the L2 errors in various variables for the SWSTC2. h: thick-
ness; u: normal velocity components w.r.t. primary cells; v: tangential velocity compo-
nents; pv: potential vorticity. Resolutions range from 480km to 30km.

A case with nonlinear stationary solutions
The SWSTC2 prescribes a geostrophically balanced zonal flow as the initial
conditions for the nonlinear system (4.1), and thus the flow remains station-
ary and geostrophically balanced. The initial height and zonal velocity fields
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Figure 5.2: Convergence of the L∞ errors in various variables for the SWSTC2. h: thick-
ness; u: normal velocity components w.r.t. primary cells; v: tangential velocity compo-
nents; pv: potential vorticity. Resolution range from 480km to 30km.

have the form

gh = gh0 −
(
aΩu0 +

1

2
u20

)
cos θ, (5.1)

u = u0 cos θ. (5.2)

Following [24], we set the physical parameters as follows: Ω = 7.292×10−5s−1

(earth rotation rate), g = 9.80616ms−2 (gravity parameter), a = 6.37122 ×
106m (earth radius), gh0 = 2.94 × 104m2s−2 and u0 = 2πa/(12 days). The
latitude is denoted by θ.

In this experiment we use a set of global quasi-uniform spherical centroidal
Voronoi tessellations (SCVT, [8]) with 2562, 10242, 40962 and 655362 cells,
corresponding to resolutions of 480km, 240km, 120km, 60km and 30km re-
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Figure 5.3: Errors in the thickness field from SWSTC2 on day 15 plotted on the non-
overlapping E-grid from a spherical centroidal Voronoi tessellation. The unit for the errors
is meter. The average thickness of the fluid is about 2000 meters.

spectively. A fourth order Runge-Kutta time stepping scheme is used with a
step size of 172.8s.

We run the simulations for a period of 15 days, and plot in Fig. 5.1 and 5.2
the L2- and L∞-norm, respectively, of the errors in fluid thickness, velocities
and potential vorticity. On both figures, the reference first and second order
convergence curves are included. In Fig. 5.1 we find that the L2-norm of
the errors in the fluid thickness variable at the primary cell centers and the
L2-norm of the errors in both velocity components converge consistently at
a second-order rate. The L2-norms of the errors in the potential vorticity
variables at both the primary and dual cell centers converge consistently at
the first order, which shouldn’t be surprising because the potential vorticity
(the relative vorticity, to be precise) involves first-order derivatives of the
velocities. The L2-norm of the errors in the fluid thickness variables at the
dual cell centers also converges at a consistent first order rate. The reason
for this downgraded convergence rate (compared to that for the thickness
variable at the primary cell centers) is not fully understood. In the L∞-
norm (Fig. 5.2), the errors in the fluid thickness variable at the primary
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Figure 5.4: For the SWSTC2, the mass double time is on the order of 1013 years, and the
total energy (available potential energy + kinetic energy) doubling time is on the order of
109 years.

cell center and the errors in both of the velocity components do decrease
as the mesh refines. Even though the convergence rates are not consistent
among the resolutions considered. The errors in the fluid thickness variable
at dual cell centers and the errors in the potential vorticity variables at
both the primary and dual cell centers barely converge. The TRiSK scheme
([17]) involves only the thickness on the primary mesh, together with the
normal velocity components, as the prognostic variables. On the SWSTC2,
the scheme demonstrates a convergence order of 1.5 in the L2 norm for the
thickness variable; the errors in the L∞ norm barely converge (see Figure 7
therein). The performance of the co-volume on the thickness variable on the
primary mesh, the same one as in TRiSK, should be considered favorably,
however, it should also be kept in mind that its performance on the thickness
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variable on the dual mesh is significantly degraded.
Figure 5.3 shows the distribution of errors in the thickness fields from

both the primary and dual meshes on a global non-overlapping E-grid. Grid
imprinting is evident in this global error field. This plot also confirms that
the errors in the thickness field on the dual (triangular) mesh are more pro-
nounced than on the primary mesh (c.f. Figures 5.1 and 5.2). In fact, the
most severe errors come from the triangles around the few pentagonal cells.

By design, the co-volume scheme (4.43) conserves mass and absolute vor-
ticity. It is also shown to conserve total energy. To demonstrate these conser-
vative properties, we run a simulation of the SWSTC2 on the quasi-uniform
120km SCVT grid for a period of 500 days, and we examine the conservation
of each of the three quantities mentioned above.

The stationary solutions of the SWSTC2 is meridionally symmetric, and
therefore the flow has zero total absolute vorticity (TAV). For the discrete
system (4.43) we compute the normalized total absolute vorticity (NTAV) as

NTAVC =

∑
i hiqiAi∑
iAi

, (TAV on primary cells) (5.3)

or

NTAVV =

∑
ν h̃ν q̃νDν∑

ν Dν

. (TAV on dual cells) (5.4)

Calculations using the data for the current simulation shows that both NTAVC

and NTAVV are at the order of 10−20. Compared to the typical value 10−5 of
the Coriolis parameter, the non-zero NTAVC and NTAVV can be considered
as round-off errors.

The total mass (TM) for the discrete system (4.43) is defined as

TM =
∑

i

hiAi.

For long-term simulations, a telling indicator of the mass conservativeness of
a numerical scheme is the time needed for the doubling of the system’s total
mass. We calculate the total mass doubling time (TMDT) as

TMDT =
TM ∗∆t

|[TM ]| ,

where ∆t denotes the time step size and [TM] the change in total mass
between two time steps. For this experiment, the TM holds virtually constant

36



over the whole simulation period; the TMDT is at the order of 1013 years
(Fig. 5.4), more than enough for any realistic applications.

The total energy (TE) is defined as the sum of the available potential
energy (APE) and the kinetic energy (KE), that is,

TE =
∑

e

h̄eAeK̄e +
1

2

(∑

i

1

2
gAi(hi − h̄)2 +

∑

ν

1

2
gAν(h̃ν − h̄)2

)
, (5.5)

where h̄ is the average fluid thickness. As for the total mass, we calculate
the total energy doubling time (TEDT) as

TEDT =
TE ∗∆t

|[TE]| ,

where [TE] is the change in total energy between two time steps. Again, over
the whole simulation period, the TE holds virtually constant; the TEDT is
at the order of 109 years (Fig. 5.4).

A case with mountain topography
The SWSTC5 ([24]) involves a zonal flow impinging on a mountain. The

initial zonal velocity u of the flow and the surface height h̃ are given by

u = u0 cos θ,

gh̃ = gh0 −
(
aΩu0 +

u20
2

)
cos θ,

respectively. The mountain, as part of the lower boundary, has the form

b = b0

(
1− r

R0

)
.

The fluid thickness h is then give by

h = h̃− b.

In the above, θ represents the latitude as usual, and the other physical param-
eters are set following [24], namely, Ω = 7.292 × 10−5s−1, g = 9.80616ms−2,
a = 6.37122m, u0 = 20ms−1, h0 = 5960m, b0 = 200m, R0 = π/9, r2 =
min[R2

0, (λ−λc)2 + (θ− θc)2], with λ denoting the longitude and λc = −π/2,
θc = π/6. For this test case we use a generic fourth order Runge-Kutta
scheme with a step size of 172.8s.
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Figure 5.5: Convergences of the L2 errors in the thickness variables on primary cells and
the thickness variables on dual cells for the SWSTC5. Resolutions range from 480km to
30km.

There are no known analytic solutions to the SWSTC5. What are avail-
able, instead, are high-resolution reference solutions by spectral methods
([19]). To study the convergence of the co-volume scheme on SWSTC5, we
run the test case again on a set of global SCVT grids with 2562, 10242, 40962,
163842 and 655362 cells, corresponding to resolutions of 480km, 240km,
120km, 60km and 30km. We then compare the fluid thickness variables,
both at the primary cell centers and at the dual cell centers, to the spectral
T511 high-resolution reference solutions of SWSTC5. The L2-norms of the
errors on day 15 are computed and plotted in Fig. 5.5 against the number
of cells, which is proportional to the resolutions. We find that the thick-
ness variables on the primary cell centers and the thickness variables on the
dual cell centers are equally accurate, and both converge to the reference
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solutions at approximately the second order (c.f. the reference convergence
curves) throughout the whole range of resolutions used for this study. This
result is similar to that of [17] (Fig. 8 therein).
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Figure 5.6: Snapshot of the relative vorticity (RV) field on day 50 for the SWSTC5. Top
left: RV on hexagons, no diffusion. Top right: RV on triangles, no diffusion. Bottom left:
RV on hexagons, with the ∇4 diffusion of 1.6e14. Bottom right: RV on triangles, with the
∇4 diffusion of 1.6e14.
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The mountain topography of SWSTC5 serves as an inhomogeneity that
gradually breaks down the symmetry of the flow, and it is known that the
flow evolves into turbulence in around 25 days. We run the SWSTC5 on
the 40962-cell (res. 120km) SCVT, first without any diffusion and then with
a biharmonic diffusion, for 50 days. In Figure 5.6 are the snapshots of the
relative vorticity field from these two simulations on day 50. All plots are
made on the same colormap (shown in the figure) to emphasize the large-scale
structures shared among them. For the inviscid simulation, the vorticity field
on the triangular mesh (top right) appears slightly than the vorticity field on
the hexagonal mesh (top left). The stripy grid-scale oscillation in the vor-
ticity field on the hexagonal mesh could be the manifestation of a spurious
computational mode, as we recall that the vorticities on the hexagonal mesh
are defined by the normal velocity components on the triangular mesh (see
(4.17)), which has been shown to support one spurious mode (see (3.17)).
With a biharmonic diffusion of 1.6× 1014m4s−1, which is typical at this level
of resolutions, the noises and the oscillations, for both the hexagonal and
triangular meshes, are largely suppressed. In this study we only experiment
with the basic biharmonic diffusions. Currently there is active research on
advanced advection schemes (see e.g. [6, 5, 23]) that can control the compu-
tational modes without much damage on the large-scale structures. These
options will be explored in our future work.

A case with a doubly periodic domain.
The SWSTC2 and 5 has a Rossby deformation radius of about 2,000km at the
mid-latitudes, which is well resolved by virtually all shallow water models.
However, in a realistic ocean, the higher internal baroclinic modes have much
smaller equivalent depths, and accordingly much smaller baroclinic Rossby
deformation radii ([10]). For example, the typical values for the Rossby de-
formation radius of the first baroclinic modes of the ocean are 10-30km (again
see [10]), which is, at the best, only marginally resolved by the present-day
cutting-edge high resolution ocean models. When the Rossby deformation
radius is not well resolved, the performance of many numerical schemes, in-
cluding the popular C-grid schemes are severely downgraded. This challenge
motivates [9] to explore the merits of various numerical schemes on both the
hexagonal and triangular meshes. Here we construct a test case that is very
similar to the one in [9] in that it has a very small Rossby deformation radius,
and we examine how spurious modes can affect our co-volume scheme under
the circumstance that the Rossby deformation radius is not resolved.
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Due to its double-system nature, another potential concern about the
co-volume scheme is that the two subsystems may drift far too apart. In
a subsequent experiment with this test case (but with a minor change in
one parameter) , we want to numerically assess the drifting. This idealized
setting allows us to push the case to the extreme by assuming a vanishing
Coriolis parameter, which leads to a complete decoupling between the sub-
system (h, u) and the subsystem (h̃, v) in the scheme(3.5) for the linearized
shallow water equations. This modified setting is still physically relevant, as
it resembles the narrow region along the equator.

The test case is set in a 2, 000km× 1, 732km doubly periodic domain. At
t = 0, the surface height of the flow is given by

h0(x, y) = 0.408 + 0.02e
−
[
(x−xc2.5r )

2
+( y−ycr )

2
]
,

with (xc, yc) = (1, 000km, 866km) being the center of the domain and r =
160km the radius of the perturbation region. The Coriolis parameter is set
to a constant f = 10−4, and therefore the flow has a Rossby deformation
radius of approximately R = 20km. The initial velocity field is set to zero,
u0(x, y) = 0. This choice is non-essential, as the flow will be engaged in
geostrophic adjustment.

On a uniform hexagon-triangular staggered grid of resolution d = 40km,
we have R/d = 0.5, the same radio that [9] takes. We use a fourth order
Runge-Kutta scheme with a step size of 720s, and plot in Figure 5.7 the
divergence field after 400 time steps (about 3 days) on both the hexagonal
and triangular meshes. Due to the coarseness of the meshes, the cell shapes
are evident on both plots. Nonetheless, the divergence field on the hexagonal
mesh is non-oscillatory, and its structure is coherent. No checkboard noise
or other spurious modes are seen. On the triangular mesh, the divergence
field appears oscillatory along the contact lines between positive and negative
regions. This is probably due to the grid structure on the triangular mesh,
where the centers of neighboring triangles are not at the same level. No
computational modes are seen at this stage.

To assess the possible decoupling between the fields on the primary mesh
and the fields on the dual mesh, we calculate and the plot the normalized L2-
norm of the difference between the thickness fields on the two meshes, both
with a non-zero Coriolis parameter and with a vanishing Coriolis parameter.
The discrete variables hi and h̃ν cannot be directly compared because they
are defined on different and non-overlapping grid points. To circumvent this
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(a) On hexagons. (b) On triangles.

Figure 5.7: The divergence field on the hexagons and the triangles after 400 time steps
(around day 3). Both figures are on the identical color scale, and are showing the same
region of the domain (zonal (400km, 1600km) X meridional (360km, 1440km)).

technical difficulty we first interpolate hi on the dual cell centers, call the
new discrete variables ĥν , and then compare them with h̃ν , and compute the
normalized L2-norm of the difference between these two fields as

√∑
ν Aν(ĥν − h̃ν)2√∑
ν Aν h̃ν(t = 0)2

.

We note that, on a hexagon-triangular grid with the primary and dual meshes
referring to the hexagons and triangles respectively, there are twice as many
triangles as there are hexagons. When a field is mapped from its native mesh
to another mesh with higher resolution, none of its defects will be hidden or
filtered out, and this makes the subsequent comparison most revealing of the
defects in the data.

In Figure 5.8 we plot the time evolution of the L2-norm of the difference
between h (ĥ to be precise) and h̃, for each of the grids used. The plots
are set on a semi-log scale to reveal the relation between the difference and
the grid resolution at any given time. The left panel (a) shows that, with
a non-zero Coriolis parameter, the difference between two thickness fields
does not increase over time for each of the grids considered, and at any
fixed time, the difference between the two fields converges at a second order
with respect to the grid resolutions, which is the optimal convergence rate
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of the co-volume scheme with respect to the grid resolutions. In contrast,
on the right panel (b) for the case with a vanishing Coriolis parameter, the

difference between h and h̃ on each grid grows linearly in time. Based on
linear extrapolation, the L2 errors will be as large as the mean field in about
150,000 days. Again, it seen in this case that, at any fixed time, the difference
between the two fields converges towards zero at a roughly second order with
respect to the grid resolutions. The fact that the difference between h and h̃
converges at the optimal convergence order of the numerical scheme for both
the zero- and non-zero-Coriolis cases suggests that the difference between
the two fields are directly correlated to the numerical errors in the them. In
other words, the divergence between the two fields is not substantial for both
cases. That the difference between the two fields grows liearly in time for
the zero-Coriolis case should not come as a surprise, as the the numerical
errors in a discrete system are expected to grow, linearly in time for most
cases. That the difference between the fields remains relatively constant for
the non-zero-Coriolis case may be attributed to the outstanding performance
of the co-volume scheme in resolving the slow geostrophic adjustments in this
case.

(a) (b)

Figure 5.8: The growth of the difference between hi and h̃ν , for a case on a doubly periodic
domain: (a) with a non-zero Coriolis parameter f = 10−4, and (b) with a vanishing Coriolis
parameter.
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6. Concluding remarks

The co-volume scheme specifies both the normal and tangential velocity
components on the edges and evolve fluid thickness on both the primary
and dual cell centers. It can be viewed as coupled C-grid schemes on the
primary and dual meshes, or as a generalization of the E-grid scheme onto
an unstructured mesh connecting the velocity points. On a uniform quadri-
lateral staggered grid, the scheme possesses the same dispersive relation as
that of the Z-grid scheme on a subset of the resolved wavenumber space as-
sociated with either the primary or the dual mesh. Outside this subset, the
co-volume scheme behaves like an E-grid. The co-volume scheme achieves
this performance without the burden of globally inverting elliptic equations,
but at the cost of evolving a double-sized system compared to the classical
C-grid scheme. On the uniform hexagon-triangular staggered grid, the co-
volume scheme has two inertial-gravity wave modes on each of the hexagonal
and the triangular meshes, and two spurious computational modes on the
triangular mesh. The inertial-gravity modes remain monotonically increas-
ing even when the Rossby deformation radius is under-resolved. These wave
modes, including both the inertial-gravity and the spurious modes, account
for about half of the wavenumber space resolvable on the hexagon-triangular
grids. We do not know whether the dispersive relations on the unidenti-
fied wavenumber space are benign or not. Numerical experiments with the
NSWE demonstrate that the co-volume scheme achieves a consistent second-
order convergence rate for the prognostic variables on the primary mesh, and
conservation of mass, energy and potential vorticity up to time truncation
errors.

The co-volume scheme is algorithmically most close to the TRiSK scheme.
These schemes can also operate on the same type of grids, although the co-
volume scheme is applicable to a much wider class of grids. Therefore, it is
tempting to compare these two schemes in terms of efficiency. The co-volume
scheme specifies prognostic variables h and u on the primary mesh and h̃
and v on the dual mesh, together with diagnostic variables q and q̃ etc. The
prognostic variables are advanced simultaneously on both the primary and
dual meshes. The TRiSK is a C-grid scheme with the prognostic variables
h and u on the primary mesh, but it also defines diagnostic variables, e.g. h̃
and q̃, on the dual mesh. These variables are diagnosed from the prognostic
variables at each time step. In addition, at every time step, the tangential
velocity components v, defined on the edges, are reconstructed from the
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normal velocity components u according to mapping scheme set forth in [21],
which itself is an expensive process. Due to these extra calculations that
TRiSK needs to carry out besides advancing the prognostic variables, we
expect that the co-volume and the TRiSK schemes should be comparable in
terms of efficiency. Numerical tests with both schemes using the SWSTC5
and an explicit fourth order Runge-Kutta time stepping technique confirm
this conclusion. When these schemes are applied to a three dimensional
model, an implicit or a split-explicit time stepping technique will likely be
used. We do not foresee that these advanced stepping techniques will make
one scheme more efficient than the other, but more analysis and numerical
experiments are certainly warranted.

TRiSK
h, u,

h̃(h), v(u)

CD-grid
h, u,

h̃(h), v

Co-volume
h, u,

h̃, v

Decreasing dependence of h̃, v on h, u

Figure 6.1: Diagram on the relation between the TRiSK, CD-grid and co-volume schemes.

The co-volume scheme for the NSWE, on both orthogonal and non-
orthogonal grids, requires the values of the thickness and the potential vor-
ticity on the edges, the thickness for computing the thickness fluxes, and
the thickness and the potential vorticity for computing the nonlinear Corio-
lis terms. We obtain an approximation to each of these variables by taking
the mean of its values on neighboring primary and dual cell centers. This
choice has served us well in the sense that it leads to mostly a second-order
convergence for the state variables on quasi-uniform SCVT grids and that it
ensures preservation of PV dynamics and conservation of energy up to time
truncation errors on both orthogonal and non-orthogonal grids. However, a
smarter reconstruction of each of these variables on the edges, taking local
inhomogeneity into account and differentiating between its values along the
primary cell edge and the dual cell edge, is expected to help the co-volume
scheme on non-orthogonal grids to achieve an improved and consistent con-
vergence rate. This subject is left for future explorations.
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Another related issue, which is also a potential subject of further en-
deavors, is about the advection scheme for the thickness and the PV vari-
ables. The current work lays down the framework for constructing co-volume
schemes for SWEs and explores the potential of these schemes in climate ap-
plications through linear wave analysis and numerical experiments. In the
next step, various advection schemes, for example, the Monotone Upstream-
centered Schemes for Conservation Laws (MUSCL, [22]) and the continuous,
linear-upwind stabilised transport (CLUST, [23]), will be explored. These
advanced advection schemes are expected to improve the overall accuracy of
the scheme and/or control the computational modes.

The C-grid TRiSK scheme and the CD-grid scheme of [1] can both be cast
in the co-volume framework. These two schemes and the co-volume scheme
are distinguished by the level of dependence of the dual variables h̃ and v on
the primary variables h and u. We denote such dependence by writing the
dependent variable as a function of the independent variable, e.g. h̃(h). The
diagram in Figure 6.1 illustrates the dependence among its variables for each
of the three schemes and the relation between them. In TRiSK, both of the
dual variables h̃ and v are diagnosed from the primary variables h and u,
i.e. the dual variables are completely dependent on the primary variables. In
the CD-grid scheme, only the dual thickness variable h̃ is dependent on the
primary thickness variable; the tangential velocity component is independent
of the normal velocity component. The co-volume scheme represents the
extreme case in which the primary variables h and u and the dual variables
h̃ and v are treated independently. In this article we present the co-volume
scheme as it stands. Numerical results demonstrate that it is a competitive
option towards simulations of geophysical flows. Modifications to the scheme
are certainly possible. For example, the dual variables h̃ and v can be made
to be partially dependent on the primary variables h and u. This will lead
to stronger coupling between the two subsystems on the primary and dual
meshes. It may also mitigate the spurious modes on the dual mesh. Such
modifications will be explored in our future work.

The co-volume scheme also has a few key advantages that should stim-
ulate further research on this method. The scheme is applicable to non-
orthogonal grids. We derive the general form of the numerical scheme for the
NSWE on non-orthogonal grids. In this work we only evaluate the merits of
the scheme on orthogonal grids. We believe that to tell a whole story about
the scheme on non-orthogonal grids requires significant amount of effort and
space, and is better left for a separate endeavor. Another advantage of the co-
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volume scheme is that the presence of both velocity components on the edges
should enhance the capability of the scheme to deal with complex boundaries.
One idea is, in the case of hexagon-triangular grids, to align the triangles with
the boundaries. It is known that triangular meshes can accurately represent
the boundaries of complex geometries. In contrast, hexagonal meshes, used
by schemes like TRiSK, tend to have unrealistic jigsaws along the ocean-land
boundaries. Finally, the real world ocean or atmosphere has many baroclinic
modes with small equivalent depthes and hence small baroclinic Rossby de-
formation radii that are not resolved in current global circulation models
(see discussion in the doubly periodic test case in the last section). It has
been shown that the co-volume scheme maintains a monotonically increas-
ing inertial-gravity modes on both the hexagonal and triangular meshes even
when the Rossby deformation radius is not resolved, and it will be interest-
ing to see what impacts does the scheme has on three-dimensional ocean or
atmosphere simulations.
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